Copied to
clipboard

?

G = C42.145D10order 320 = 26·5

145th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.145D10, C10.932- (1+4), C10.742+ (1+4), C4.4D417D5, (C2×Q8).84D10, D10⋊D443C2, D103Q834C2, (C2×D4).113D10, C4.D2031C2, C22⋊C4.38D10, C20.6Q829C2, Dic5⋊D435C2, (C4×C20).222C22, (C2×C20).633C23, (C2×C10).228C24, (C2×D20).37C22, C4⋊Dic5.52C22, D10.12D447C2, C2.54(D48D10), C2.78(D46D10), C23.50(C22×D5), (D4×C10).213C22, C22.D2028C2, (C22×C10).58C23, (Q8×C10).131C22, C22.249(C23×D5), Dic5.14D443C2, C23.D5.60C22, D10⋊C4.73C22, C54(C22.56C24), (C2×Dic5).118C23, (C2×Dic10).41C22, C10.D4.84C22, (C22×D5).100C23, C2.54(D4.10D10), (C22×Dic5).147C22, (C5×C4.4D4)⋊20C2, (C2×C4×D5).132C22, (C2×C4).201(C22×D5), (C2×C5⋊D4).66C22, (C5×C22⋊C4).69C22, SmallGroup(320,1356)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.145D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.145D10
C5C2×C10 — C42.145D10

Subgroups: 854 in 220 conjugacy classes, 91 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C4 [×11], C22, C22 [×12], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×10], D4 [×6], Q8 [×2], C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×2], C42, C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×10], C22×C4 [×4], C2×D4, C2×D4 [×5], C2×Q8, C2×Q8, Dic5 [×6], C20 [×5], D10 [×6], C2×C10, C2×C10 [×6], C4⋊D4 [×4], C22⋊Q8 [×4], C22.D4 [×4], C4.4D4, C4.4D4, C42.C2, Dic10, C4×D5 [×2], D20, C2×Dic5 [×6], C2×Dic5 [×2], C5⋊D4 [×4], C2×C20 [×3], C2×C20 [×2], C5×D4, C5×Q8, C22×D5 [×2], C22×C10 [×2], C22.56C24, C10.D4 [×6], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4 [×6], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, C22×Dic5 [×2], C2×C5⋊D4 [×4], D4×C10, Q8×C10, C20.6Q8, C4.D20, Dic5.14D4 [×2], D10.12D4 [×2], D10⋊D4 [×2], C22.D20 [×2], Dic5⋊D4 [×2], D103Q8 [×2], C5×C4.4D4, C42.145D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4) [×2], 2- (1+4), C22×D5 [×7], C22.56C24, C23×D5, D46D10, D48D10, D4.10D10, C42.145D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 121 108 62)(2 73 109 132)(3 123 110 64)(4 75 111 134)(5 125 112 66)(6 77 113 136)(7 127 114 68)(8 79 115 138)(9 129 116 70)(10 61 117 140)(11 131 118 72)(12 63 119 122)(13 133 120 74)(14 65 101 124)(15 135 102 76)(16 67 103 126)(17 137 104 78)(18 69 105 128)(19 139 106 80)(20 71 107 130)(21 49 153 91)(22 82 154 60)(23 51 155 93)(24 84 156 42)(25 53 157 95)(26 86 158 44)(27 55 159 97)(28 88 160 46)(29 57 141 99)(30 90 142 48)(31 59 143 81)(32 92 144 50)(33 41 145 83)(34 94 146 52)(35 43 147 85)(36 96 148 54)(37 45 149 87)(38 98 150 56)(39 47 151 89)(40 100 152 58)
(1 46 11 56)(2 57 12 47)(3 48 13 58)(4 59 14 49)(5 50 15 60)(6 41 16 51)(7 52 17 42)(8 43 18 53)(9 54 19 44)(10 45 20 55)(21 134 31 124)(22 125 32 135)(23 136 33 126)(24 127 34 137)(25 138 35 128)(26 129 36 139)(27 140 37 130)(28 131 38 121)(29 122 39 132)(30 133 40 123)(61 149 71 159)(62 160 72 150)(63 151 73 141)(64 142 74 152)(65 153 75 143)(66 144 76 154)(67 155 77 145)(68 146 78 156)(69 157 79 147)(70 148 80 158)(81 101 91 111)(82 112 92 102)(83 103 93 113)(84 114 94 104)(85 105 95 115)(86 116 96 106)(87 107 97 117)(88 118 98 108)(89 109 99 119)(90 120 100 110)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 156 31 146)(22 145 32 155)(23 154 33 144)(24 143 34 153)(25 152 35 142)(26 141 36 151)(27 150 37 160)(28 159 38 149)(29 148 39 158)(30 157 40 147)(41 92 51 82)(42 81 52 91)(43 90 53 100)(44 99 54 89)(45 88 55 98)(46 97 56 87)(47 86 57 96)(48 95 58 85)(49 84 59 94)(50 93 60 83)(61 72 71 62)(63 70 73 80)(64 79 74 69)(65 68 75 78)(66 77 76 67)(101 114 111 104)(102 103 112 113)(105 110 115 120)(106 119 116 109)(107 108 117 118)(121 140 131 130)(122 129 132 139)(123 138 133 128)(124 127 134 137)(125 136 135 126)

G:=sub<Sym(160)| (1,121,108,62)(2,73,109,132)(3,123,110,64)(4,75,111,134)(5,125,112,66)(6,77,113,136)(7,127,114,68)(8,79,115,138)(9,129,116,70)(10,61,117,140)(11,131,118,72)(12,63,119,122)(13,133,120,74)(14,65,101,124)(15,135,102,76)(16,67,103,126)(17,137,104,78)(18,69,105,128)(19,139,106,80)(20,71,107,130)(21,49,153,91)(22,82,154,60)(23,51,155,93)(24,84,156,42)(25,53,157,95)(26,86,158,44)(27,55,159,97)(28,88,160,46)(29,57,141,99)(30,90,142,48)(31,59,143,81)(32,92,144,50)(33,41,145,83)(34,94,146,52)(35,43,147,85)(36,96,148,54)(37,45,149,87)(38,98,150,56)(39,47,151,89)(40,100,152,58), (1,46,11,56)(2,57,12,47)(3,48,13,58)(4,59,14,49)(5,50,15,60)(6,41,16,51)(7,52,17,42)(8,43,18,53)(9,54,19,44)(10,45,20,55)(21,134,31,124)(22,125,32,135)(23,136,33,126)(24,127,34,137)(25,138,35,128)(26,129,36,139)(27,140,37,130)(28,131,38,121)(29,122,39,132)(30,133,40,123)(61,149,71,159)(62,160,72,150)(63,151,73,141)(64,142,74,152)(65,153,75,143)(66,144,76,154)(67,155,77,145)(68,146,78,156)(69,157,79,147)(70,148,80,158)(81,101,91,111)(82,112,92,102)(83,103,93,113)(84,114,94,104)(85,105,95,115)(86,116,96,106)(87,107,97,117)(88,118,98,108)(89,109,99,119)(90,120,100,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,156,31,146)(22,145,32,155)(23,154,33,144)(24,143,34,153)(25,152,35,142)(26,141,36,151)(27,150,37,160)(28,159,38,149)(29,148,39,158)(30,157,40,147)(41,92,51,82)(42,81,52,91)(43,90,53,100)(44,99,54,89)(45,88,55,98)(46,97,56,87)(47,86,57,96)(48,95,58,85)(49,84,59,94)(50,93,60,83)(61,72,71,62)(63,70,73,80)(64,79,74,69)(65,68,75,78)(66,77,76,67)(101,114,111,104)(102,103,112,113)(105,110,115,120)(106,119,116,109)(107,108,117,118)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126)>;

G:=Group( (1,121,108,62)(2,73,109,132)(3,123,110,64)(4,75,111,134)(5,125,112,66)(6,77,113,136)(7,127,114,68)(8,79,115,138)(9,129,116,70)(10,61,117,140)(11,131,118,72)(12,63,119,122)(13,133,120,74)(14,65,101,124)(15,135,102,76)(16,67,103,126)(17,137,104,78)(18,69,105,128)(19,139,106,80)(20,71,107,130)(21,49,153,91)(22,82,154,60)(23,51,155,93)(24,84,156,42)(25,53,157,95)(26,86,158,44)(27,55,159,97)(28,88,160,46)(29,57,141,99)(30,90,142,48)(31,59,143,81)(32,92,144,50)(33,41,145,83)(34,94,146,52)(35,43,147,85)(36,96,148,54)(37,45,149,87)(38,98,150,56)(39,47,151,89)(40,100,152,58), (1,46,11,56)(2,57,12,47)(3,48,13,58)(4,59,14,49)(5,50,15,60)(6,41,16,51)(7,52,17,42)(8,43,18,53)(9,54,19,44)(10,45,20,55)(21,134,31,124)(22,125,32,135)(23,136,33,126)(24,127,34,137)(25,138,35,128)(26,129,36,139)(27,140,37,130)(28,131,38,121)(29,122,39,132)(30,133,40,123)(61,149,71,159)(62,160,72,150)(63,151,73,141)(64,142,74,152)(65,153,75,143)(66,144,76,154)(67,155,77,145)(68,146,78,156)(69,157,79,147)(70,148,80,158)(81,101,91,111)(82,112,92,102)(83,103,93,113)(84,114,94,104)(85,105,95,115)(86,116,96,106)(87,107,97,117)(88,118,98,108)(89,109,99,119)(90,120,100,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,156,31,146)(22,145,32,155)(23,154,33,144)(24,143,34,153)(25,152,35,142)(26,141,36,151)(27,150,37,160)(28,159,38,149)(29,148,39,158)(30,157,40,147)(41,92,51,82)(42,81,52,91)(43,90,53,100)(44,99,54,89)(45,88,55,98)(46,97,56,87)(47,86,57,96)(48,95,58,85)(49,84,59,94)(50,93,60,83)(61,72,71,62)(63,70,73,80)(64,79,74,69)(65,68,75,78)(66,77,76,67)(101,114,111,104)(102,103,112,113)(105,110,115,120)(106,119,116,109)(107,108,117,118)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126) );

G=PermutationGroup([(1,121,108,62),(2,73,109,132),(3,123,110,64),(4,75,111,134),(5,125,112,66),(6,77,113,136),(7,127,114,68),(8,79,115,138),(9,129,116,70),(10,61,117,140),(11,131,118,72),(12,63,119,122),(13,133,120,74),(14,65,101,124),(15,135,102,76),(16,67,103,126),(17,137,104,78),(18,69,105,128),(19,139,106,80),(20,71,107,130),(21,49,153,91),(22,82,154,60),(23,51,155,93),(24,84,156,42),(25,53,157,95),(26,86,158,44),(27,55,159,97),(28,88,160,46),(29,57,141,99),(30,90,142,48),(31,59,143,81),(32,92,144,50),(33,41,145,83),(34,94,146,52),(35,43,147,85),(36,96,148,54),(37,45,149,87),(38,98,150,56),(39,47,151,89),(40,100,152,58)], [(1,46,11,56),(2,57,12,47),(3,48,13,58),(4,59,14,49),(5,50,15,60),(6,41,16,51),(7,52,17,42),(8,43,18,53),(9,54,19,44),(10,45,20,55),(21,134,31,124),(22,125,32,135),(23,136,33,126),(24,127,34,137),(25,138,35,128),(26,129,36,139),(27,140,37,130),(28,131,38,121),(29,122,39,132),(30,133,40,123),(61,149,71,159),(62,160,72,150),(63,151,73,141),(64,142,74,152),(65,153,75,143),(66,144,76,154),(67,155,77,145),(68,146,78,156),(69,157,79,147),(70,148,80,158),(81,101,91,111),(82,112,92,102),(83,103,93,113),(84,114,94,104),(85,105,95,115),(86,116,96,106),(87,107,97,117),(88,118,98,108),(89,109,99,119),(90,120,100,110)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,156,31,146),(22,145,32,155),(23,154,33,144),(24,143,34,153),(25,152,35,142),(26,141,36,151),(27,150,37,160),(28,159,38,149),(29,148,39,158),(30,157,40,147),(41,92,51,82),(42,81,52,91),(43,90,53,100),(44,99,54,89),(45,88,55,98),(46,97,56,87),(47,86,57,96),(48,95,58,85),(49,84,59,94),(50,93,60,83),(61,72,71,62),(63,70,73,80),(64,79,74,69),(65,68,75,78),(66,77,76,67),(101,114,111,104),(102,103,112,113),(105,110,115,120),(106,119,116,109),(107,108,117,118),(121,140,131,130),(122,129,132,139),(123,138,133,128),(124,127,134,137),(125,136,135,126)])

Matrix representation G ⊆ GL8(𝔽41)

399000000
42000000
001190000
0032300000
00001210237
0000922914
0000016109
000025163238
,
4000280000
04013130000
33100000
380010000
000023361526
00004018026
000000171
0000004024
,
52230350000
283322360000
02827190000
171322170000
000020252538
0000533187
00003237334
00003203626
,
21356110000
12205190000
241222140000
392724190000
00003725730
0000333142
000013373816
000090515

G:=sub<GL(8,GF(41))| [39,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,12,9,0,25,0,0,0,0,10,22,16,16,0,0,0,0,23,9,10,32,0,0,0,0,7,14,9,38],[40,0,3,38,0,0,0,0,0,40,3,0,0,0,0,0,0,13,1,0,0,0,0,0,28,13,0,1,0,0,0,0,0,0,0,0,23,40,0,0,0,0,0,0,36,18,0,0,0,0,0,0,15,0,17,40,0,0,0,0,26,26,1,24],[5,28,0,17,0,0,0,0,22,33,28,13,0,0,0,0,30,22,27,22,0,0,0,0,35,36,19,17,0,0,0,0,0,0,0,0,20,5,32,32,0,0,0,0,25,33,37,0,0,0,0,0,25,18,3,36,0,0,0,0,38,7,34,26],[21,12,24,39,0,0,0,0,35,20,12,27,0,0,0,0,6,5,22,24,0,0,0,0,11,19,14,19,0,0,0,0,0,0,0,0,37,3,13,9,0,0,0,0,25,33,37,0,0,0,0,0,7,14,38,5,0,0,0,0,30,2,16,15] >;

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4E4F···4K5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order122222224···44···45510···101010101020···2020202020
size11114420204···420···20222···288884···48888

47 irreducible representations

dim11111111112222244444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2D5D10D10D10D102+ (1+4)2- (1+4)D46D10D48D10D4.10D10
kernelC42.145D10C20.6Q8C4.D20Dic5.14D4D10.12D4D10⋊D4C22.D20Dic5⋊D4D103Q8C5×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8C10C10C2C2C2
# reps11122222212282221444

In GAP, Magma, Sage, TeX

C_4^2._{145}D_{10}
% in TeX

G:=Group("C4^2.145D10");
// GroupNames label

G:=SmallGroup(320,1356);
// by ID

G=gap.SmallGroup(320,1356);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽